Version: Test |
Folgen und Reihen I zurück |
Explizite und rekursive Definition einer Folge |
Grundsätzliches Eine Folge kann auf zwei Arten definiert werden, nämlich explizit und rekursiv. Wir werden beide Arten auf dieser Seite kennenlernen. Explizite Definition Man definiert eine Folge explizit, indem man eine Formel angibt, aus der ein bestimmtes Glied (an) sofort berechnet werden kann. Beispiel: Wie gesagt, mit einer expliziten Formel kann man z.B. das 5-te Glied sofort berechnen: Rekursive Definition Bei der rekursiven Definition gibt man das erste Glied der Folge an (a1), sowie zweitens eine Formel, mit der man aus einem beliebigen Glied (an) das nachfolgende Glied (an+1) berechnen kann. Beispiel: Aufgrund dieser beiden Angaben kann man alle Glieder der Folge bestimmen: a1 = 5 a2 = 2·5 = 10 a3 = 2·10 = 20 a4 = 2·20 = 40 a5 = 2·40 = 80 Man sieht: Bei der rekursiven Definition ist das Bestimmen eines Gliedes etwas aufwendiger, da man erst alle vorigen Glieder bestimmen muß. © by www.mathematik.net |