Version: Test
©Raddy 2000

Folgen und Reihen VI        ZURÜCK

Explizite Formel für das n-te Glied
a-absatz.pcx (280 Byte)
Einleitung
Genauso wie bei den arithmetischen Folgen wollen wir nun
auch bei den geometrischen Folgen eine Formel finden, mit der
man ein beliebiges Glied der geometrischen Folge berechnen
kann, ohne die vorigen Glieder der Folge berechnen zu müssen.
   
a-absatz.pcx (280 Byte)
Explizite Formel für das n-te Glied
Die explizite Definition einer geometrischen Folge lautet:

             an =   a1·qn-1
     
   
a-absatz.pcx (280 Byte)
Beispiel
Gegeben:
Die Folge 5, 15,  ... von der bekannt ist, daß die Folge eine
geometrische Folge ist.

Gesucht: 
Das 10.Glied dieser Folge

Lösung:
Aus den gegebenen Daten lesen wir ab, daß a1 = 5. 
Weil die Folge laut Voraussetzung geometrisch ist gilt 
ferner q=3, denn 15 : 5 = 3

Diese beiden Werte setzen wir in die Lösungsformel ein,
und erhalten:

             a10 =  a1·qn-1  =  5·310-1 = 98.415





                 (c) www.mathematik.net