Version: Test
İRaddy 2003

Potenzen I                                                                                          ZURÜCK

Beweis des
Potenzgesetz 3:

Potenzieren
von Potenzen
a-absatz.pcx (280 Byte) Was soll bewiesen werden?
Wir wollen das Potenzgesetz 3 beweisen:
p02s30p1.pcx (1211 Byte)
  
a-absatz.pcx (280 Byte) Beweis
Zum Beweis wenden wir die Definition einer Potenz an,
die wir im Kapitel 1 kennen gelernt haben:

p02s30p1.pcx (1211 Byte)

Auf die rechte Seite der Gleichung wenden wir das Potenzgesetz 1
an, das die Multiplikation von Potenzen gleicher Basis regelt:

p02s30p1.pcx (1211 Byte)

Laut der Definition der Multiplikation natürlicher Zahlen1gilt:
n-mal der Summand m ist gleich n·m, und somit auch m·n :

p02s30p1.pcx (1211 Byte)





1 zum Beispiel gilt: 3+3+3+3+3 = 5·3